Hölder continuity of solutions to a basic problem in the calculus of variations

نویسندگان

  • Pierre Bousquet
  • Carlo Mariconda
  • Giulia Treu
چکیده

For the basic problem in the calculus of variations where the Lagrangian is convex and depends only on the gradient, we establish the continuity of the solutions when the Dirichlet boundary condition is defined by a continuous function φ. When φ is Lipschitz continuous, then the solutions are Hölder continuous. To cite this article: P. Bousquet et al., C. R. Acad. Sci. Paris, Ser. I 346 (2008). © 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. Résumé Continuité hölderienne des solutions d’un problème de calcul des variations. Pour un problème de calcul des variations multidimensionnel, où le lagrangien convexe ne dépend que du gradient, on montre que la continuité de la fonction φ définissant la condition de Dirichlet au bord implique la continuité des minimiseurs sur l’adhérence du domaine. Lorsque φ est lipschitzienne, alors les minimiseurs sont hölderiens. Pour citer cet article : P. Bousquet et al., C. R. Acad. Sci. Paris, Ser. I 346 (2008). © 2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. Version française abrégée On considère le problème (P) de minimiser I : u → ∫

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical solution of variational problems via Haar wavelet quasilinearization technique

In this paper, a numerical solution based on Haar wavelet quasilinearization (HWQ) is used for finding the solution of nonlinear Euler-Lagrange equations which arise from the problems in calculus of variations. Some examples of variational problems are given and outcomes compared with exact solutions to demonstrate the accuracy and efficiency of the method.

متن کامل

NON-POLYNOMIAL SPLINE FOR THE NUMERICAL SOLUTION OF PROBLEMS IN CALCULUS OF VARIATIONS

A Class of new methods based on a septic non-polynomial spline function for the numerical solution of problems in calculus of variations is presented. The local truncation errors and the methods of order 2th, 4th, 6th, 8th, 10th, and 12th, are obtained. The inverse of some band matrixes are obtained which are required in proving the convergence analysis of the presented method. Convergence anal...

متن کامل

Partial Hölder continuity for solutions of subquadratic elliptic systems in low dimensions

We consider weak solutions of second order nonlinear elliptic systems in divergence form under standard subquadratic growth conditions with boundary data of class C. In dimensions n ∈ {2, 3} we prove that u is locally Hölder continuous for every exponent λ ∈ (0, 1 − n−2 p ) outside a singular set of Hausdorff dimension less than n − p. This result holds up to the boundary both for non-degenerat...

متن کامل

Existence solutions for new p-Laplacian fractional boundary value problem with impulsive effects

Fractional differential equations have been of great interest recently. This is because of both the intensive development of the theory of fractional calculus itself and the applications of such constructions in various scientific fields such as physics, mechanics, chemistry, engineering, etc. Differential equations with impulsive effects arising from the real world describe the dyn...

متن کامل

Hölder Continuity for Local Minimizers of a Nonconvex Variational Problem

|ξ| ≤ f(x, u, ξ) ≤ L(1 + |ξ|). A function u ∈ W 1,p loc (Ω) is a local minimizer of F in Ω if F (u; spt (v − u)) ≤ F (v; spt (v − u)) , for every v ∈ W 1,p loc (Ω) such that spt (v − u) ⊂⊂ Ω. Well known results due to Giaquinta and Giusti [13, 15] ensure that local minimizers of F are locally α-Hölder continuous for some α < 1. According to Meyers’ example in [19], when f is not continuous in Ω...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008